Dear Customer,

The “Information Letter” is an additional means of communication intended to provide you with a regular summary of the main technical topics concerning each helicopter family. All the other forms of written communication remain valid, in particular the “Information Notices” whose content is more targeted but equally important.

The information given in this letter is for information purposes only, it in no way replaces the official Maintenance publications issued by Airbus Helicopters or any other manual or recommendations in any form whatsoever.

This Information Letter is issued within the scope of the initiative for improved operational availability of the EC225 and is the 3rd letter of the series. Its purpose is to summarize all of the progress made as part of this initiative, and which is available or will be available very soon (SBs, MMA updates, MMEL updates, availability of new equipment amendments, etc.). It is classified according to main systems in order to highlight the need for these updates for your operations, and to give you an overall vision so that you may optimize the implementation process on your fleet.

Reminder: Information highlighting the domain affected by the improvement will be associated with each point:
- **RTB (Return to Base)**: improvement aiming to reduce the number of events which may lead the flight crew to abort the flight, significantly disrupting operations.
- **Delayed/canceled flight**: improvement aiming to reduce the number of events which may lead the flight crew to delay or cancel the planned flight, significantly disrupting operations.
- **AOG**: improvement aiming to reduce the number of events which may lead to prolonged grounding of the aircraft.
- **Maintenance/DMC**: improvement aiming to reduce the number of events with consequences that may cause heavy and/or costly corrective actions.

This Information Letter does not deal with the many modifications in progress which will be detailed in other Information Letters issued at a later date.
1. Structure

1.0. Improvement of the pylon protection fairing (ATA 53)

Delayed/canceled flight /Maintenance/DMC

The embodiment of MOD 0726860 proposed through Service Bulletin EC225-53-043 improves the resistance of the pylon protection fairing, more commonly known as the 'D-panel'. This modification therefore treats the potential problems of contact and interference which generate the cases of cracks on the support fittings and the upper attachment tab which have been reported to Airbus Helicopters. This modification enables the periodic inspection interval of the pylon protection fairing to be significantly increased, by greatly improving the reliability considering the high number of removals of this fairing.

When the de-icing system is installed, cracks can appear on the flanges and spread to this pylon protection fairing. A modification which will improve the resistance of these flanges in this configuration is undergoing approval. We will keep you informed of the progress in the next Information Letter.

1.1. Frame X7225 - Improvement of the corrosion protection (ATA 53)

Maintenance / DMC

Airbus Helicopters has been informed of corrosion problems observed on frame X7225, notably in its lower part, under the floor. Consequently, Modification 332A081395 developed and proposed through Service Bulletin EC225-53-035 increases the diameter of the drainage hole of the intermediate structure and protects sensitive areas through the application of a polyurethane paint and a sealing product on the flange of frame X7225 and the connection fittings. This modification thus improves the corrosion protection of rivets and junction frame X7225 in order to prevent corrosion initiation as this would, in the long term, impose laborious repairs in the area.

1.2. Transmission deck - Sealing improvement (ATA 53)

Delayed/canceled flight / Maintenance / DMC

Airbus Helicopters has been informed of the problems of running fuel flowing in the cabin on the transmission deck. This flow was due to a leak at a self-sealing union (which are subject to other improvements also proposed in this LI SP026-2014). After being studied, it was observed that this flow originated from the spacers of the RH engine fuel supply pipe attachment clamps. Consequently, Airbus Helicopters has developed Modification 0726920, proposed through Service Bulletin EC225-53-033, whose purpose is to improve the sealing between the transmission deck and the spacers of the RH engine fuel supply pipe attachment clamps.

1.3. Reliability of the sliding cowling opening/closing detection (ATA 53)

RTB / AOG / Maintenance / DMC

Feedback has revealed that untimely in-flight illumination of the “COWLINGS” indicator light occurred even though the sliding cowling was correctly closed. Analysis has concluded that the vibrations and accelerations on the sliding cowling generate incorrect opening detections in flight. Consequently, Airbus Helicopters has developed MOD 0726605 and 0726942, proposed through Service Bulletins EC225-53-019 and EC225-53-038, which improve the design of the parts of this detection system. MOD 0726605 is a prerequisite of MOD 0726942: improvement of the Micro-Switch (RH side), of the handle spring (RH side), and of the proximity sensor (LH side) as well as the locking hook (LH side). It should be noted that the use on the LH side of a single support for the proximity sensor and the locking roller will considerably reduce the possibility of the assembly being misadjusted. The embodiment of this modification will considerably increase the reliability of the sliding cowling opening/closing detection.
1.4. Reliability of the detection of the opening/closing of the Ground Power Unit (GPU) door (ATA 52)

RTB / AOG / Maintenance / DMC

Airbus Helicopters has been informed of cases of incorrect detection of GPU door opening. The presence sensor used to detect whether the door is closed or not is a magnetic sensor. Closure detection is improved by MOD 0728084, proposed through Service Bulletin EC225-52-011, which adds a steel detection plate at the proximity sensor, thus increasing the detection ability. Consequently, the reliability of the system is improved, thus preventing potential Return To Base (RTB) incidents. This modification is also proposed on the AS332 helicopter through Service Bulletin AS332-52.00.46.

1.5. Frame X3245 - Prevention of cracks (ATA 53)

Maintenance / DMC

During a scheduled inspection, before installation of the skin on an EC225 helicopter, version LP, drill marks were identified on the front edging of the exterior flange of frame X3245. Drill marks, which may be a consequence of the structure's manufacturing process, could favor crack initiation on frame X3245. Consequently, Airbus Helicopters recommends compliance with Service Bulletin EC225-53-039, which explains how to check for drill marks and, if necessary, proceed with touch ups.

Additional checks have been introduced into the manufacturing process for new aircraft.

1.6. Optimization and reinforcement of the sponson/flotation support fittings (ATA 53)

Maintenance / DMC

Airbus Helicopters has been informed of cases of the loosening of the attachment screws as well as cases of fatigue rupture of the structural container fittings. Consequently, Airbus Helicopters has developed MOD 0726801, proposed through Service Bulletin EC225-53-031, which consists, on the structural containers, in replacing the emergency flotation / container connection fittings and the lower rear casing support fittings with reinforced fittings with improved fatigue resistance, as well as replacing the current screws with self-locking screws.

2. Fuel & Engine Installation

2.0. Air intakes with screen: Check of the installation and improvement of the icing protection (ATA 30 - 53)

RTB / AOG

The purpose of checking air intakes with screens as proposed by Service Bulletin EC225-30-035 is to ensure the correct positioning of the air intake screen in relation to the heating mat. This check was implemented following a case of in-flight engine flame-out in icy conditions which was reported to Airbus Helicopters. Analysis has concluded that an accumulation of ice in the area between the screen and the heating mat may be sufficient, in certain conditions, to cause engine flame-out following the spontaneous detachment of a block of ice.

Consequently, in order to prevent an RTB in icy conditions, Service Bulletin EC225-30-035 proposes MOD 0728025, concerning the check of the distance between the inner screen and the heating mat and, in the event of incorrect positioning, the replacement of the adjustable screen. This modification is also proposed on the AS332 helicopter through Service Bulletin AS332-30.00.76.
2.1. Improvement of the sound quality of the GONG audio warning at engine start-up (ATA 31)

Maintenance / DMC

Distortions in the GONG audio warning, which is activated by the "DIFF PWR" logic, can be temporarily observed at engine start-up due to the manufacturing tolerances of the warning boards. This phenomenon cannot occur on new helicopters because the boards are sorted during installation. However, in the event of in-service board replacement, the signal sent to the intercommunication system from the combination of signals from each board may be distorted. Service Bulletin EC225-31-009 therefore proposes MOD 0728028, which eliminates the potential constraints from the pairing of boards, by communicating the signal via a single warning board only.

2.2. Replacement of the rapid self-sealing unions with screwed self-sealing unions. (ATA 28)

Delayed/canceled flight / Maintenance / DMC

As announced in LI SP025-2013, Airbus Helicopters has developed optional equipment OP 26934, made available through Service Bulletin EC225-28-014, which consists in installing screwed self-sealing unions instead of the SAPI self-sealing unions. Despite the advantages of using SAPI rapid self-sealing unions in terms of maintenance, cases of fuel leaks have been observed during maintenance operations following the disconnection of unions. This modification is proposed in the form of optional equipment which will be integrated into the off-shore definition for new helicopters.

New stainless steel screwed unions integrate a locking device.

2.3. Retrofit of the POD fuel tanks (ATA 28)

RTB / AOG / Maintenance / DMC

Within the scope of the POD fuel tank improvement plan, detailed in Information Notice 2551-I-28, Airbus Helicopters has developed MOD 0726884, through Service Bulletin EC225-28-013, which introduces improvements to the "bird-strike" plate anti-corrosion protection. This improvement is an addition to the improvement announced in LI SP025-2013 concerning Service Bulletin EC225-28-012. This modification, contrary to all those detailed in LI SP025-2013, can only be embodied at the manufacturer’s premises. The modification will therefore only be embodied if the fuel tank requires a return for repair.

2.4. Engine start-up - Improvement of the reliability of Engine Interface Units (BIM), (ATA 24 - 80)

RTB / AOG / Maintenance / DMC

The studies announced in LI SP025-2013, concerning the improvement to the Engine Interface Unit (BIM) resistance to damage from external equipment have led to the re-calibration of the "START ENG" circuit-breakers. Modification MOD 0726985, introduced through Service Bulletin EC225-24-021, will prevent numerous deteriorations of the Engine Interface Units (BIM) caused by excess currents on the engine harness. Work Card 80-11-00-01, presented in LI SP025-2013, proposed optimized trouble-shooting. A recent update is available in PRE-PRINT format in 'Heavy Helicopter ShareCopter'. This update introduces the reference of the new Work Card 80-11-01-063 (BIM removal/installation). This new Work Card 80-11-01-063 requests a check for the embodiment of MOD 0726985 prior to installation of a new BIM. For this reason, it is advised to comply with this Service Bulletin in anticipation of requirements or, at the least, procure the kits enabling compliance at the time when the BIM is replaced.

In addition, Airbus Helicopters has developed a BIM modification (MOD 0726991), in order to ensure its sturdiness with respect to the current levels observed on the engine harness. Being interchangeable, the new BIM (P/N 7047A43210013) is not proposed by a Service Bulletin, but can be procured. The associated documents (MMA 80-11-00-063 and 80-11-00-100) are also available in 'Heavy Helicopter ShareCopter'.
In order to benefit from the significant improvement in BIM reliability, the two modifications MOD 0726985 and MOD 0726991 are necessary.

2.5. Modification of the engine regulation harness routing (ATA 24 - 80)

AOG / Maintenance / DMC
Cases of damage to the LH engine regulation harness have been reported to Airbus Helicopters following interference observed between the harness and the engine compartment ventilation flap. Consequently, MOD 0726899 introduced through Service Bulletin EC225-77-009 modifies its routing by adding a support on the transmission deck.

2.6. Fire detection - Improvement of the engine fire detector vibratory environment (ATA 72)

RTB / AOG / Maintenance / DMC
In the scope of increasing the reliability of the fire detection system, numerous improvements have been developed by Airbus Helicopters and Turbomeca.

In addition to the improvements detailed in LI SP 24-2013, modifications aiming to improve the vibratory environment of detectors in the engine compartment have also been developed. The purpose of TU 58 (New fire detector support, proposed through Turbomeca Service Bulletin 298 72 2058) and TU 63 (Installation of cold area fire detector supports with damping, proposed through Turbomeca Service Bulletin 298 72 2063) is to modify the dynamic loads on the fire detectors.

The joint embodiment of all the modifications (new detection board, new leak-tight detectors and new supports) will significantly reduce the number of false fire detection alarms and contribute to the overall improvement of the system. Each modification can, however, be embodied independently of the others.

3. Avionics

3.0. M’ARMS system: Change of the accelerometer attachment washer (ATA 45)

Delayed/canceled flight
It has been revealed that the cause of some of the false vibratory alarms reported by the monitoring system was the loss of the accelerometer tightening torque. This was related to the crushing of the plastic washer ensuring the electronic insulation of the accelerometers.

In order to prevent the crushing of the plastic washer and prevent interferences between the lockwire and washer, Airbus Helicopters has developed MOD 0726976 (Service Bulletin EC225-45-009) which consists in installing a metal washer in addition to the plastic washer, in order to spread the pressure applied to the plastic washer by the tightening torque in a more even manner.

The new washers are to be installed on all the accelerometers attached with nuts/bolts, except for the MOD45 monitoring accelerometer, whose certification is currently being discussed with EASA.

Early feedback from customers who have embodied this modification has been very positive.
3.1. M’ARMS system: Revision 6 of the definition of the ground station vibratory thresholds (ATA 45)

Vol retardé/annulé

Service Bulletin EC225-45-001 regularly informs operators of the updates of the M’ARMS system thresholds to be initialized at the ground station.

Following the implementation of red thresholds on all the indicators, as a consequence of the events in the North Sea, the number of alarms on all the indicators increased considerably without being representative of deterioration of the mechanical assemblies. Conscious of the operational problems created by the increase in the number of unsubstantiated alarms, Airbus Helicopters is reviewing the M’ARMS threshold policy. The first step involved a modification of the Kg indicator thresholds, introduced by Revision 6 of the Service Bulletin, as well as the update of Work Cards 45-11-08-211, 45-11-08-611, 45-11-08-811 and 45-11-08-812, available in the EC225/EC725 technical documentation, or the ‘Heavy Helicopter ShareCopter’ space for recent updates. Do not hesitate to contact the Airbus Helicopters HUMS Support for further information.

3.2. Electrical Power System - Prevention of overheating on emergency batteries (ATA 24)

RTB / Delayed flight / Maintenance / DMC

Airbus Helicopters has been informed of several cases in which the “ELEC” indicator light on the “10WW” warning panel and the “E.BAT” indicator light on the “33VU” control panel came on.

Investigations have concluded that the cause is the overheating of the emergency battery accumulator unit. This overheating is generally caused by a complete discharge of the accumulator unit, which may damage it, particularly during long periods without recharging the emergency battery. In order to prevent other occurrences of the emergency battery overheating, the consequence of which could be an RTB, Airbus Helicopters recommends compliance with Service Bulletin EC225-24-023 which details the methods for checking the accumulator unit and, if necessary, proposes returning it for repair.

3.3. VMS - Modification of the diagnostic table (ATA 31)

Delayed flight / Maintenance / DMC

In the scope of continued improvement of trouble-shooting procedures, Airbus Helicopters has developed and made available the new diagnostics table No. 11, created for version V2.4.7 (MOD 0726779). It cancels inappropriate failure codes, and notably the occurrences associated with time 0, which were simply a consequence of the initialization of certain equipment upon energizing. This table is available in Service Bulletin EC225-31-001 Revision 5. As a reminder, the diagnostics table has no effect on VMS operation. It only concerns the maintenance messages used for trouble-shooting. Information Notice 2087-I-31, which is also already available, helps to ensure the best management of the AMC software versions: configuration files, software version, customized references and diagnostics table.

The update of the diagnostics table requires a return to an approved center. Unless you wish to apply this new table in a proactive manner, the update will be performed free of charge when returning the equipment to Airbus Helicopters for repair. However, it is your responsibility to specify the reference to be loaded, as per Information Notice 2087-I-31.

3.4. AMC - Addition of ATA 46 to the MMEL of the EC225 (ATA 46)

RTB / AOG

The update of MMEL RN 4 13-25 integrates a new chapter, ATA 46.00.00 “display and integration of systems”. This chapter integrates the take-off authorization, which is subject to specific conditions, if an AMC channel is inoperative. This upgrade represents a significant operational advantage by preventing RTBs, which crews performed previously because they knew that they could not take off again once they had landed on the oil rig, or in situations in which taking off from an oil rig would require the prior authorization from Airbus Helicopters.
3.5. FMS - New CMA 9000 configuration files (ATA 24)

Maintenance/DMC
The new software version 169-614876-310J, known as "V310J", associated with the configuration file corresponding to your aircraft, is proposed through Service Bulletin **EC225-34-034**.
These modifications integrate a large number of improvements (concatenation of the improvements from previous versions and the new functions) such as:
- correction of bugs such as the loss of configuration, loss of heading in polar regions or navigation data display anomalies in areas with a magnetic variation equal to 0 (see **Information Notice 2570-I-34**),
- improvement of the deviation from the bearing information value (DTK) corresponding to the value of the magnetic variation (see **Information Notice 2155-I-34**),
- correction of "problem report" sources (Improved wind calculation logic and management of a "Transdown" procedure in bi-FMS configuration),
- addition of a function enabling automatic resetting of the DVS (Doppler Velocity Sensor) position on the GPS position while this is still available,
- improvement and certification of SAR modes,
- "Distance to go" display in Km or NM,
- correction of the excessive turning anticipation,
- addition of interface CMA9000 – TCAS II.

In addition, the number of configurations applicable to the V310J version has been reduced to the minimum, in order to optimize your logistical resources. The embodiment of this modification will ensure that you benefit from all the improvements and will enable harmonization across your entire fleet.

3.6. Automatic Pilot - Update of trouble-shooting Work Cards (ATA 22)

Maintenance / DMC
In order to propose optimized trouble-shooting on the automatic pilot, the following 3 Work Cards have been updated and are available in pre-print format in the 'Heavy Helicopter ShareCopter' space:
- **22-40-01-01** "Fault isolation" for the Automatic Pilot,
- **22-30-00-721** "Tests" of the automatic movement control,
- **22-32-00-821** "Adjustment of the longitudinal, lateral or yaw actuators" of the Trim actuators.

The simultaneous integration of these three Work Cards is required.

3.7. Lighting - New LED lights (ATA 33)

Maintenance / DMC
New LED lights are available:
- to replace a strobe light on the top of the stabilizer, proposed through Service Bulletin **EC225-33-009**.
 This modification will enable offshore customers to meet the operational requirement of a white light with a luminous intensity of over 2000 candelas.
- to replace existing halogen lamps used in the sponsons as fixed landing lights, proposed through Service Bulletin **EC225-33-008**.

Switching to LED technology significantly improves reliability.

These modifications are also available for AS332 helicopters through Service Bulletin **AS332-33.00.32** and Service Bulletin **AS332-33.00.31**.
3.8. Antennas – addition of **Hi-Tak** seal (ATA 34)

Maintenance / DMC

Within the scope of helicopter corrosion protection, Airbus Helicopters has integrated a Hi-TAK seal into the installation of the antennas. This seal ensures both perfect leak-tightness and electrical continuity between the antenna and its support.

The two new Work Cards, **MMA 34-00-00-062** and **MMA 23-00-00-062**, propose the addition of the Hi-TAK seal to radio and navigation antennas as well as their support.

In order to ensure the flexibility of operations, it is possible to order pre-cut seals specific to a type of antenna, or to cut out the required quantity from a larger piece of seal according to your needs.

The Work Cards are now available in the latest MMA revision.

3.9. IFDS – Reconfiguration of the AS332 L2 screens (ATA 34)

Maintenance / DMC

Originally, the AMLET software which is used to transfer configurations from one SMD66 screen to another (and thus preventing the return to Airbus Helicopters), was developed on the basis of the Windows 95 Operating System, which is destined to disappear.

Consequently, Airbus Helicopters has **switched the AMLET software** to more recent versions of **Windows** such as XP and 7.

The reconfiguration kit (CD + harness) as well as the update of the associated documentation are now available. Work Card **MMA 34-70-00-861** is available in the ‘Heavy Helicopter ShareCopter’ space.

4. Dynamic Assemblies (Rotors & Gearboxes)

4.0. Improvement of the IGB and TGB temperature probes (ATA 64–65)

RTB / AOG

Information Letter **LI SP 024-213** explained that a high number of the false TGB.T or IGB.T alarms were related to damage to the wiring and connections. In addition to Service Bulletins **EC225-65-003** and **EC225-64-006**, which introduced straight unions on the temperature probe connectors, Airbus Helicopters has increased the cross-section of the wires of a gage (**MOD 0726952**) in order to reduce their sensitivity to repeated manipulation. Because this increase in cross-section can only be performed on the complete harness, its replacement is proposed by Service Bulletin **EC225-65-006**, for potential compliance during a significant intervention in the area.

In addition, a new stainless steel welded body temperature probe is now available as a replacement for probe **RP210-00** because the disconnection of this probe’s connector from the probe body has been regularly observed. This new temperature probe (**P/N 704A37232026**) was developed for the MGB (**MOD 0753034**), IGB (**MOD 0761058**) and TGB (**MOD 0766315**). Updated Work Card **MMA 60-00-00-222** is available in PRE-PRINT format. As it is interchangeable, it is not proposed by a Service Bulletin, but it can be procured. This information is available in the ‘Heavy Helicopter ShareCopter’ space.

4.1. Deletion of the dye-penetrant inspection of the tail rotor drive shaft

Maintenance / DMC

In order to minimize maintenance costs, Airbus Helicopters has deleted the dye-penetrant inspection of the tail rotor drive shaft, regardless of the type of paint (former paint, or new paint following compliance with the new environmental regulations). This cancellation has been substantiated through testing on samples representative of the shaft. Updated Work Card **MMA 65-11-00-212** is available in PRE-PRINT format in the ‘Heavy Helicopter ShareCopter’ space.
4.2. Engine - MGB coupling: New attachment bolts and improvement of the Work Cards (ATA 63)

Maintenance / DMC
In the scope of continued improvement, Work Card 63-21-00-224 "Engine - MGB coupling check" was recently updated. It proposes further details in order to reduce the workload for maintenance teams. It is available in PRE-PRINT format in the 'Heavy Helicopter ShareCopter' space.

5. Heating/Ventilation & Air Conditioning

5.0. Air conditioning - Improvement of the BEHR air conditioning software (ATA 21)

Delayed/canceled flight / Maintenance / DMC
In order to prevent damaging the air conditioning, the under-load detection logic can interrupt the use of the air conditioning. In this logic, several conditions can trigger the shut-down of the system, e.g.: detection of low system pressure. The under-cooling calculation logic is also included in the conditions which can trigger the air conditioning shut-down. Following studies carried out to improve the air conditioning system, it was revealed that it is possible to prevent the air conditioning from shutting down according to the calculation of the under-cooling parameter. Consequently, Airbus Helicopters proposes MOD 0726974 through Service Bulletin EC225-21-035. This modification proposes replacing the air conditioning calculator software with a new version in order to eliminate the shut-down related to under-cooling parameter monitoring. Other software improvements are integrated, such as cancellation of the inversion of the cabin and cockpit area selection. The embodiment of this modification requires the return of the ACU units to Airbus Helicopters.

5.1. Heating - Electrical protection of the heating regulation unit (ATA 21)

Maintenance / DMC
The cockpit P3 valve is used to direct the flow of P3 hot air in the ducts according to the heating control panel. Mechanical blockages of the valve can lead to an electrical overload on the inputs/outputs of the heating regulation unit which manages this valve. In order to prevent damage to the unit, Airbus Helicopters proposes MOD 0726938, through Service Bulletin EC225-21-032, which consists in adding fuses to each of the three +28V electrical control outputs. This modification is also proposed on the AS332 helicopter through Service Bulletin AS332-21.00.35.

5.2. Air conditioning – Improvement of the drain tray (ATA 21)

Maintenance / DMC
Problems of water retention and discharge in the drain tray have been reported to Airbus Helicopters. In order to improve the drainage of the air conditioning system’s drain tray, regardless of whether it is a BEHR or SECAN model, Airbus Helicopters proposes MOD 0726918, through Service Bulletin EC225-21-030. This modification proposes an optimized design for the RH and LH drains.

5.3. Air conditioning – Maintenance of the BEHR cooling system (ATA 21)

Maintenance / DMC
In order to propose optimized maintenance and trouble-shooting of the BEHR cooling system, Work Card 21-52-03-642 has been created and is available in PRE-PRINT format in the 'Heavy Helicopter ShareCopter' space. This Work Card proposes a procedure for analyzing the gas (in the recharge bottle, the air conditioning system before recovery, and the charging bench), system tightness tests, procedures required for filling or draining the system as well as a procedure to be followed following failure. These procedures (draining/filling of systems, rinsing of circuits in the event of contamination, etc.) are made possible thanks to a new air conditioning bench validated by Airbus Helicopters. This new bench will also be used for a large part of the other helicopters from the commercialized range.
6. Improvements to various components

6.0 Change of TECALEMIT hydraulic hoses (ATA 29 - 67)

Maintenance / DMC
A periodic inspection was implemented, through compliance with Service Bulletin EC225-05-027 for the EC225 and AS332-05.00.92 for the AS332, following the observation of corrosion on a metal braid under the fire-resistant sheath, in the MGB compartment. This corrosion may be due to deterioration or gaping of the fire-resistant sheath at the pipe ends, enabling humidity to enter between the sheath and the metal braid.

In order to cancel this periodic inspection, Airbus Helicopters has drawn up MOD 0726955 introduced through Service Bulletin EC225-29-005, which upgrades the TECALEMIT hoses only. They are lightened and receive a new silicon fire-resistant sheath.

6.1 Visual icing indicator - Flight in limited icy conditions (ATA 30)

Delayed/canceled flight
TIP (Technical Improvement Proposal) 30-80-01 for the EC225 and TIP 30-80-03 for the AS332 propose MOD 332P083761.00/01. This modification consists in installing the visual icing indicator (lit for night flights) on the pilot door exterior. This indicator is part of the required equipment described in SUP 4 of the Flight Manual concerning flight in limited icy conditions.

We hope that this information has been of use to you.

Yours sincerely,

Nayibe GOMEZ
Product Support Manager
EC225/EC725 & AS332/AS532
EBSX225 - Programme Support